Physical and Mechanical Characterization of a Nano Carbon Infused Aluminum-matrix Composite
نویسندگان
چکیده
A nanocarbon-infused aluminum-matrix composite, termed "covetic," has been developed by Third Millennium Metals, LLC, and we have evaluated the enhanced performance prospects for strength and electrical conductivity. This paper examines the effects of the nanoscale carbon on the physical, electrical and mechanical properties of the metal-matrix composite based on microscopy, hardness, quasi-static tensile strength, high strain-rate compression strength and electrical conductivity measurements. In the as-extruded condition (warm worked at 400°F) the results show that the nanocarbon provides approximately a 30% improvement in yield strength compared to baseline 6061-T0. High strain rate, Split Hopkinson Pressure Bar (SHPB) tests revealed an opposite trend-the as-extruded covetic exhibited lower stresses at equivalent strains. In the T6 condition, the strength and ductility of 6061 with and without nanocarbon are approximately equal at all strain rates. The nanoscale carbon increased the electrical conductivity of 6061 by 43% in the as-extruded condition, but by only about 1% in the T6 condition. Electron microscopy showed that the covetic 6061 was more resistant to grain growth and coarsening during extrusion. The carbon/aluminum composite displays potential as an improved strength aluminum alloy with much higher electrical conductivity than is typical for other aluminum alloys and aluminum matrix composites.
منابع مشابه
EBSD characterization of nano/ultrafine structured Al/Brass composite produced by severe plastic deformation
In the present work, nano/ultrafine structured Al/Brass composite was produced by accumulative roll bonding (ARB) up to eight cycles. The evolution of grain refinement and deformation texture and their effect on the mechanical properties were investigated. It was observed that by increasing the ARB cycles, due to the difference in flow properties of the metal constituents, brass layers necked, ...
متن کاملRole of Intensive Milling on Microstructural and Physical Properties of Cu80Fe20/10CNT Nano-Composite
Carbon nano-tube (CNT) reinforced metal matrix nano-composites have attracted a great deal of attention in recent years due to the outstanding physical and mechanical properties of CNTs. However, utilizing CNT as reinforcement for alloy matrixes has not been studies systematically and is still a challenging issue. In the present study, Cu80Fe20/10CNT nanocomposite was synthesized by mechanical ...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملMechanical and Tribological Behavior of Aluminum Alloy LM13 Reinforced with Titanium Dioxide Metal Matrix Composites
In the present research work physical, mechanical and tribological behavior of Aluminum (Al) alloy LM13 reinforced with Nano-sized Titanium Dioxide (TiO2) particulates were fabricated, mechanical and tribological properties were investigated. The amount of nano TiO2 particulates in the composite was added from 0.5% to 2% in 0.5 weight percent (wt %) increments. The Al-LM13-TiO2 Metal Matrix Com...
متن کامل